Program: Master of Science Program in Applied Physics

Degree: Master of Science (Applied Physics)

Study Plan:

1) Research Program (Scheme A 1)

Year	First Trimester	Cr	Second Trimester	Cr	Third Trimester	Cr
	105698 Thesis	3	105698 Thesis	8	105697 Colloquium I	1
ear 1	Comprehensive Examination				105698 Thesis	8
Yea	Thesis Proposal Defense					
F	Total	3	Total	8	Total	9
	105698 Thesis	12	105698 Thesis	9	105797 Colloquium II	1
ear 2					105698 Thesis	6
Yea					Thesis Examination	
r	Total	12	Total	9	Total	7

2) Regular Program (Scheme A 2)

Year	First Trimester	Cr	Second Trimester	Cr	Third Trimester	Cr
	105601 Mathematical and Numerical Methods for Applied Physics	4	105615 Applied Electrodynamics	4	105625 Applied Quantum Physics	4
Year 1	205501 Entrepreneurship and Innovation	2	105619 Mechanics and Thermal Physics	4	105696 Seminar I	1
Ye	105685 Introduction to Applied Physics	2			Elective Course	4
					Comprehensive Examination	
	Total	8	Total	8	Total	9
	Elective Course	4	105698 Thesis	8	105698 Thesis	4
	Elective Course	4			Thesis Examination	
ear	105698 Thesis	3				
X	Thesis Proposal Defense					
	Total	11	Total	8	Total	4

3) Regular Program (Scheme B)

Year	First Trimester	Cr	Second Trimester	Cr	Third Trimester	Cr
	105601 Mathematical and Numerical	4	105615 Applied Electrodynamics	4	105625 Applied Quantum Physics	4
	Methods for Applied Physics					
-	205501 Entrepreneurship and Innovation	2	105619 Mechanics and Thermal Physics	4	105696 Seminar I	1
Year	105685 Introduction to Applied Physics	2			Elective Course	4
					Comprehensive Examination	
	Total	8	Total		Total	9
	Elective Course	4	Elective Course	4	105695 Independent Study	7
	Elective Course	4	Elective Course	4		
	or		or			
5	105691 Graduate Cooperative Education	8	105691 Graduate Cooperative Education	8		
Year	1		1			
Y			or 105692 Graduate Cooperative Education	8		
			2			
	Total	8	Total	8	Total	7

Program:Master of Science Program in Applied PhysicsDegree:Master of Science (Applied Physics)Course Description:

	C	Credit	D		
	Courses	(LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
		Self stud.)			
105601	Mathematical and	4(4-0-8)	Consent of the School	This course aims to provide the	1. describe the complicate physics
	Numerical Methods			essential mathematical backgrounds	problems related to this course
	for Applied Physics			and numerical methods used in	2. execute basic problem-solving
				applied physics. The topics includes	strategy for problems related to this
				basics of vector calculus, ordinary	course
				differential equations, introduction to	3. relate and apply physics knowledge
				partial differential equations,	related to this course
				Laplace's Equation, and boundary	
				value problems. The mathematical	
				concepts will be used to study	
				systems in physics. Numerical	
				approach will be applied when	
				analytical solutions do not exist.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105604	Modeling and Simulation in Physics	4(4-0-8)	Consent of the School	This course aims to provide students with essential concepts for problem solving in physics by making models based on mathematical functions, then utilize the models to simulate and solve for numerical solution or trend under different conditions. The topics include numerical data- analysis, optimization, curve fitting and method of least squares, functions and empirical models, rate of change, concepts of integral calculus, system dynamics models, growth and decay, force and motion, simulation techniques.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course
105605	Back-of-the- Envelope Physics	4(4-0-8)	Consent of the School	This course focuses on how to estimate the physical quantities in the following topics: mechanics, sound and light, heat, electricity, atoms and molecules, quantum mechanics, and astronomy	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105606	Research with large collaborations	2(2-0-4)	Consent of the School	This course is designed to provide basic understanding of working in large physics collaborations. Students will be prepared in working in collaboration among research groups/institutes/countries. Case studies may include Conseil Européen pour la Recherche Nucléaire (CERN), Jiangmen Underground Neutrino Observatory (JUNO), Five hundred meter Aperture Spherical Telescope (FAST), construction of synchrotron radiation facility, industrial-scale energy-storage project and/or solar- cell project.	- ·
105613	Mechanics	4(4-0-8)	Consent of the School	This course covers fundamentals of mechanics which include the following topics: review of basic mechanics, variational principles, Lagrangian, Hamiltonian, central force, rigid body, small oscillation, special theory of relativity, and canonical transformations.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course

Courses	Credit (LectLab-	Dronoquisito	Course Description	Exposted Learning Outcomes
Courses	(LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105614 Electrodynamics	4(4-0-8)	Consent of the School	This course emphasizes on the following topics electrostatics including boundary- value problems, multipoles, electrostatics in dielectrics, magnetostatics, time- varying fields, Maxwell's equations, electromagnetic wave, propagation of wave, waveguides, polarization, reflection and electromagnetic radiation. Radiation by moving charges will be also studied, especially, Lienard-Wiechert's potential, and synchrotron radiation.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course
105615 Applied Electrodynamics	4(4-0-8)	Consent of the School	This course focuses on the following topics: electrostatic, magnetostatic, time-dependent field, Maxwell's equations, electromagnetic wave and the waveguide, polarization, refraction, electromagnetic radiation. The courses will also cover engineering applications such as wireless communications, the global positioning system or GPS system and the basic principles of synchrotron radiation.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105616 Thermodynamics	4(4-0-8)	Consent of the School	This course will cover the following contents: fundamental law and the first law of thermodynamics, kinetic theory of gases, internal energy, heat capacity, entropy and the second law, engine cycles, engine efficiency, free energies, Legendre transformation, phase equilibrium, the phase transition, the link between thermodynamics and statistical mechanics, and examples of engineering applications.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course
105617 Statistical Physics	4(4-0-8)	Consent of the School	This course introduces students to the very useful branch of statistical physics emphasizing the classical as well as the quantum aspects of the theory. Some of the topics to be covered are: the fundamental principles of statistical mechanics, ensembles and partition functions, foundations of quantum statistical methods, density matrix, Fermi and Bose systems. In addition, selection of special topics depending on current interest such as: superfluidity, superconductivity, critical phenomena and fluctuation may be covered.	problems related to this course 2. execute basic problem-solving strategy for problems related to this course 3. relate and apply physics knowledge to daily life phenomena 4. relate and apply physics knowledge related to this course

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105618 Fluid Mechanics	4(4-0-8)	Consent of the School	fluid dynamic phenomena. Basic physics concepts (e.g. the conservation principles of mass, momentum, and energy for fluid) are used for exploring the following topics and their related applications:	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105619 Mechanics and Thermal Physics	4(4-0-8)	Consent of the School	This course covers two fundamentals of physics: mechanics and thermal physics. Mechanics part includes the following topics: review of basic mechanics, variational principles, Lagrangian, Hamiltonian, central force, rigid body, small oscillation, special theory of relativity, and canonical transformations. Thermal Physics part covers the following contents: fundamental law and the first law of thermodynamics, kinetic theory of gases, internal energy, heat capacity, entropy and the second law, engine cycles, engine efficiency, free energies, Legendre transformation, phase equilibrium, the phase transition, the link between thermodynamics and statistical mechanics, and examples of engineering applications.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105621	Quantum Theory I	4(4-0-8)	Consent of the School	This is the first of two courses on quantum physics. It is designed to introduce the student to the common probabilistic language of modern physics of the microscopic world. Topics to be covered are: historical review of experiments and theories in the development of quantum mechanics, quantum dynamics, mathematical tools, postulate of quantum mechanics, harmonic oscillator, spin and angular momentum, hydrogen atom and other three dimensional problems, identical particles, perturbation theory, and path integral formulation of quantum mechanics.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course
105622	Quantum Theory II	4(4-0-8)	105621 Quantum Theory I or consent of the School	This course is an extension of the course Quantum Theory I. Topics to be covered are: rotation and addition of angular momentum, approximation methods and variation principle, scattering and quantum collision theory, relativistic quantum mechanics, Klein-Gordon and Dirac equations, and field quantization.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course show responsibility and discipline relate and apply physics knowledge to daily life phenomena

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105625	Applied Quantum Physics	4(4-0-8)	Consent of the School	This course introduces the weirdness of both the very small (quantum mechanics) and the very fast (Einstein's relativity). The principles and methods of quantum mechanics are covered in a practical context: students learn through applications to problems in modern electronics, material science and atomic physics. Similarly, the essentials of special relativity will be taught with reference to real applications in nuclear and astrophysics.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course
105633	Astronomy	4(4-0-8)	Consent of the School	The course covers historical background, spherical astronomy, celestial dynamics, solar system, variable stars, galaxies and universe, optical telescope, radio astronomy, space exploration, observation techniques, and computation techniques.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105634	Cosmology	4(4-0-8)	Consent of the School	Course content includes the history of the universe, matter in the universe, galaxies and their evolution, cosmic background fluctuations, dark matter and dark energy, the cosmological constant, and the accelerating and expanding universe.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course
105643	X-ray Scattering and Diffraction Techniques	4(4-0-8)	105615 Applied Electrodynamics or consent of the School		 describe the complicate physics problems related to this course perceive knowledge in the frontier physics use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105644	X-ray Absorption Spectroscopy and its Applications	4(4-0-8)	Consent of the School	This course covers the following contents: the basic physics of absorption and reflection of X-rays, relating instrumentations, application of synchrotron light, electronic and atomic structure and spectral analysis at different energy ranges. Examples of research studies are described.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course
105653	Materials Physics	4(4-0-8)	105625 Applied Quantum Physics or consent of the School	This course covers the following topics: crystal structure, bonding types in solids, diffraction and the reciprocal lattice, crystal and disorder in a solid, phase diagram and phase transition, optical properties, magnetic and electrical properties, mechanical properties, thin film materials, surface and interface, and various methods of synthesis.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course perceive knowledge in the frontier physics use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105654	Nanomaterials	4(4-0-8)	105625 Applied Quantum Physics or consent of the School	This course covers the following contents: the surface of nano materials, phase transition in nanomaterials, gas-phase synthesis, magnetic and electrical properties, optical properties, mechanical properties, various types of nanoparticles, and the characteristics of nanomaterials. Examples of research studies are described.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course perceive knowledge in the frontier physics use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge related to this course
105656	3D Printing Technology and Applications	4(4-0-8)	Consent of the School	The course covers a general understanding of additive manufacturing. This includes applications of 3D printing technology in Industry 4.0, physics of various 3D printing methods, design and construction, operation and maintenance. Development of advanced materials and characterizations of 3D printed parts are also included.	 1. describe the complicate physics problems related to this course 2. relate and apply physics knowledge to industrial problem 3. relate and apply physics knowledge related to this course

Course	es	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105661 Physica	al Optics I	4(4-0-8)		The course covers principles of light wave propagation based on wave equation and Fourier transform theory. Topics include wave equations, Kirchhoff theory, Rayleigh- Sommerfeld theory, near- and far- field diffractions and angular spectrum.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course perceive knowledge in the frontier physics
105662 Physica	al Optics II	· · · ·	105661 Physical Optics 1 or consent of the School	This course covers theory for analysis, design and set up of optical systems. The topics include properties of lenses, optical Fourier transform, optical filtering and computing, optical imaging system and optical transfer function.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course perceive knowledge in the frontier physics use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105663	Low Temperature Physics	4(4-0-8)	105616 Thermodynamics or consent of the School	This course covers the following contents: properties of helium, liquid helium and superfluid, solids at low temperatures, behavior of phonons and electrons at low temperature, angular momentum and spin, superconductivity, cooling techniques and instrumentations for low- temperature research.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course perceive knowledge in the frontier physics use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge related to this course
105664	Materials Characterization	4(4-0-8)	Consent of the School	This course covers the various techniques for characterization: optical microscopy, X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), scanning probe microscopy, X-ray spectroscopy for elemental analysis, electron spectroscopy for surface analysis, ion mass spectrometry, infrared spectroscopy and thermal analysis.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course perceive knowledge in the frontier physics use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105665	Fundamentals of Photonics	4(4-0-8)	Consent of the School	This course covers homogeneous and inhomogeneous laser medium, Gaussian beam, optical resonators, theory of laser oscillation, rate equation, 3 and 4-level laser system, general laser system, and laser applications	 describe the complicate physics problems related to this course perceive knowledge in the frontier physics make use of research database relate and apply physics knowledge to daily life phenomena
105666	Laser Technology and Applications	4(4-0-8)	Consent of the School	This course covers laser fundamentals, Q-switching, mode- locking, femtosecond laser, laser technologies in industries, interaction of laser and material, medical application, detect and measure laser signal, and laser safety.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course perceive knowledge in the frontier physics make use of research database relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105667	Nonlinear Optics	4(4-0-8)	Consent of the School	mechanical theory of nonlinear	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course make use of research database relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course
105668	Optical Systems Design	4(4-0-8)	Consent of the School	Concepts and principles of various basic optical components and accessories such as light sources, lenses, mirrors, prisms, beam splitter, fiber optics, polarizer, retarders,	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105669	Optical Tomography	4(4-0-8)	Consent of the School	range, techniques for dispersion	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course perceive knowledge in the frontier physics relate and apply physics knowledge related to this course
	Nuclear and Particle Physics	4(4-0-8)	105622 Quantum Theory II or consent of the School	After a brief introduction to the foundations of nuclear physics covering topics like properties of nuclei, nuclear models, nuclear forces, nuclear decays and nuclear reactions, the main part of the course is designed to treat at an advanced level the very rapidly developing	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105674	Astrophysics	4(4-0-8)	105613 Mechanics and 105614 Electrodynamics or consent of the School	properties of stars, nucleosynthesis, stellar structure and evolution, astronomical spectroscopy, white dwarf, neutron star, pulsar, black	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course
105681	Introduction to Biological and Medical Physics	4(4-0-8)	Consent of the School	chemistry and molecular physics to	 perceive knowledge in the frontier physics make use of research database have skills in physics communicate review discussion and presentation
105682	Nanobiotechnology	4(4-0-8)	Consent of the School	This course puts an emphasis on nanotechnology in biological applications, describing on various nanostructures and their applications in biosensors, biochips, drug delivery system, tissue engineering, cancer, dental care, agriculture, food and	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105683	Biomedical Optics	4(4-0-8)	Consent of the School	multi-photon microscopy,	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course
105684	Biotechnology for Physicists and Engineers	4(4-0-8)	Consent of the School	This course lectures on biological basis of cells, living organisms, biomolecules, genetic inheritance, gene expression, gene regulation, mutation, recombinant DNA technology, biotechnological principles and instruments for studying biomolecule interaction, DNA sequence analysis, DNA-, RNA- , protein- and cell-detection, and protein structure analysis	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105685 Introduction to Applied Physics	2(2-0-4)	Consent of the School	fields of research in Applied Physics. The topics includes, for example,	 describe the complicate physics problems related to this course perceive knowledge in the frontier physics make use of research database relate and apply physics knowledge to daily life phenomena

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105691 Graduate Cooperative Education 1		Consent of the School	a full-time employee at a workplace for one trimester as scheduled by the school. After finishing the	 show responsibility and discipline analyze the research experimental data or simulation by appropriate means relate and apply physics knowledge to industrial problem design and conduct research

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105692 Graduate Cooperative Education 2		Consent of the School	academic or professional potential as a full-time employee at a workplace for one trimester as scheduled by the school. After finishing the cooperative education, each student has to submit a project report and make a presentation to show what he/she has accomplished. Each student will be evaluated by a cooperative education advisor, job supervisor and the project report. (Grading is based on a grade of either	 perceive knowledge in the frontier physics show responsibility and discipline use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety analyze the research experimental data or simulation by appropriate means make use of research database relate and apply physics knowledge to industrial problem design and conduct research have research collaboration skills

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105695 Independent Study		Consent of the thesis advisor	Research project applying physics knowledge to solve problems for industry, develop new technology/innovative venture, or innovation management under the supervision of the project advisor.	 describe the complicate physics problems related to this course perceive knowledge in the frontier physics show responsibility and discipline use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety analyze the research experimental data or simulation by appropriate means make use of research database relate and apply physics knowledge to industrial problem design and conduct research have research collaboration skills

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105696 Seminar I	1(1-0-9)	Consent of the School	-	 perceive knowledge in the frontier physics make use of research database have skills in physics communicate review discussion and presentation

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105697 Colloquium I	1(1-0-9)	Consent of the School	The series of four colloquium courses aim to develop scientific communication skills of students. The class is designed to simulate the environment of an international academic conference: a student delivers a formal scientific presentation in English about a topic of interest and then entertains questions and discussion from an audience of peers. In this course, students acquire basic skills for giving effective scientific presentations and build self confidence as public speakers. Joint seminars with other institutes will be organized (field trips required). Grade: Satisfactory and Unsatisfactory.	 perceive knowledge in the frontier physics make use of research database have skills in physics communicate review discussion and presentation

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105698 M.Sc. Thesis in Physics		Consent of the thesis advisor	Individual research of a topic to be agreed upon with the thesis advisor.	 describe the complicate physics problems related to this course perceive knowledge in the frontier physics show responsibility and discipline use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety analyze the research experimental data or simulation by appropriate means make use of research database relate and apply physics knowledge to industrial problem design and conduct research have research collaboration skills

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105703 Computational Physics	4(4-0-8)	Consent of the School	solving advanced physical problems. The course is divided into two parts. The basic part is a brief summary of basic numerical methods of solving general mathematical problems, e. g. differentiations, integrations, matrix	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105704 Group Theory	4(4-0-8)	105621 Quantum Theory I or consent of the School		strategy for problems related to this course 3. relate and apply physics knowledge

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105713	Continuum	4(4-0-8)	105613 Mechanics or	This course covers the topics in	1. describe the complicate physics
	Mechanics		consent of the School	mechanics relating to continuous	problems related to this course
				systems such as strings, membranes	2. execute basic problem-solving
				and fluids. The course will start with	strategy for problems related to this
				Lagrangian and Hamiltonian of	course
				continuous systems to explain about	3. relate and apply physics knowledge
				the vibration, sound wave, surface	to daily life phenomena
				wave, heat transfer, and viscous	4. relate and apply physics knowledge
				fluids.	related to this course

Courses	Credit (LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
105714 Nonlinear Physics	Self stud.) 4(4-0-8)	Consent of the School	slightly, using weak probes and fields, we can learn about the undisturbed system. Most standard physics courses focus on this linear (or weakly-disturbed) regime. This course introduces students to the strange new world outside this	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105715	Advanced Electronics	4(4-0-8)	consent of the School	applications. The non-ideal effects in op-amps and various electronic devices will be discussed with applications emphasizing offset, gain and linearity. Sensors, pulse width modulations, SCRs, TRIACs and optoelectronics will be included. Interfacing and signal processing will also be discussed.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course have skills in physics communicate review discussion and presentation relate and apply physics knowledge to daily life phenomena relate and apply physics knowledge to industrial problem relate and apply physics knowledge
					related to this course

~	Credit			
Courses	•	Prerequisite	Course Description	Expected Learning Outcomes
	,			
Waves and Solitons	4(4-0-8)	Consent of the School	An introduction to linear and non-	1. describe the complicate physics
			linear wave equations. Wave	problems related to this course
			phenomena are ubiquitous in physics:	2. execute basic problem-solving
			appearing in classical mechanics,	strategy for problems related to this
			electromagnetism, quantum	course
			mechanics, quantum field theory,	3. perceive knowledge in the frontier
			astrophysics and many other areas. A	physics
			solid understanding of the	4. show responsibility and discipline
			mathematics of waves will thus	5. use the advanced scientific
			benefit a student in any physics sub-	equipment to properly carry out
			discipline. While most physics	experiments and analyze data related to
			undergraduates are familiar with	this course with safety
			elementary Fourier analysis, this	6. make use of research database
			course aims to lay a broader and	7. have skills in physics communicate
			deeper mathematical foundation.	review discussion and presentation
			Students will learn the mathematical	
			tools needed to understand and model	
			physical waves, including non-linear	
			methods required in the study of	
			solitary wave pulses (or solitons).	
	Courses Waves and Solitons	Courses (LectLab- Self stud.)	Courses(LectLab- Self stud.)PrerequisiteWaves and Solitons4(4-0-8)Consent of the SchoolUse of the S	Courses(LectLab- Self stud.)PrerequisiteCourse DescriptionWaves and Solitons4(4-0-8)Consent of the SchoolAn introduction to linear and non- linear wave equations. Wave phenomena are ubiquitous in physics:

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105733	Special Relativity and Symmetry	4(4-0-8)	105613 Mechanics and 105614 Electrodynamics or consent of the School	This course is designed to introduce the student the special theory of relativity and its applications from an advanced point of view. The lectures will cover foundations of the special relativity, Lorentz transformations and Lorentz group, covariance of Maxwell's equations, solutions of electrodynamics and kinetics of high energy collisions, and spin calculus and symmetry.	 1. describe the complicate physics problems related to this course 2. execute basic problem-solving strategy for problems related to this course 3. relate and apply physics knowledge to industrial problem 4. relate and apply physics knowledge related to this course
105734	Relativity and Space- Time		105733 Special Relativity and Symmetry or consent of the School	This course is designed to introduce the student the general theory of relativity from an advanced point of view. The lectures will cover foundations of the general theory, mathematical tools (tensor and differential geometry), development of Einstein's field equations, gravitational collapse and black hole physics, fundamental cosmology, cosmic inflation, quantum description, and gravitational radiation.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105741	Accelerator Physics I	4(4-0-8)	105614 Electrodynamics or consent of the School	The course demonstrates basic physics of particle accelerators and storage rings. Principles of charged particle acceleration and theory of RF acceleration are introduced. Physics of linear accelerators, circular accelerators and storage rings are then explored. Linear dynamics of charge particle beam is investigated to give basic understanding of the physics of particle acceleration and behaviors of charged particles under influence of linear magnetic fields of accelerator elements.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course
105742	Accelerator Physics II	4(4-0-8)	105741 Accelerator Physics I or consent of the School	The course is a follow-up of Accelerator Physics I. This course aims to give thorough understanding of charged particle beam dynamics. The emphasis is placed on nonlinear beam dynamics. The Hamiltonian formalism of charged particle beam dynamics is investigated in details. Higher order perturbations, coupled motion of charged particles in accelerators, and theories of resonance in circular accelerator and storage rings are discussed.	 describe the complicate physics problems related to this course use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105743	Instrumentation Techniques for Physics Research	4(4-0-8)	Consent of the School	The course explores theories and applications of various instruments used in basic and advanced experimental physics research. The techniques include data acquisition and processing system, optical instruments, electron diffraction, X- ray diffraction, scanning probe instruments, surface analysis, surface preparation, epitaxial growth, low temperature techniques, magnet technology, radiation and particle detection, and novel techniques in experimental physics.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course
105744	Applied Optics and Beam Line Technology	4(4-0-8)	Consent of the School	This course aims at teaching synchrotron light optics and beam line technology. The principles of measurement techniques using synchrotron light with different energy ranges for physical science research are also given. The practical training of students on the design and operation of beam line is carried out using the facilities of the Siam Photon Laboratory.	 execute basic problem-solving strategy for problems related to this course use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105745	Vacuum Science and Technology	4(4-0-8)	Consent of the School	The course describes, in details, physics and technologies of vacuum systems used in physics researches. This includes fundamental of pressure measurement, working principles of various vacuum pumps, measurement techniques of low and ultra low pressure, physics of out-gassing and materials, leak detection and vacuum control systems, and design and fabrication of vacuum systems. Applications of vacuum systems in various experimental physics research facilities are also explored.	 course 3. use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety 4. relate and apply physics knowledge to industrial problem 5. relate and apply physics knowledge
105751	Condensed Matter Physics I	4(4-0-8)	Consent of the School	This course covers theory of metal, crystal lattices, symmetries and bindings, specific heat, electronics density of states, semiconductors and insulators, transport and scattering processes, introduction to electron band structure theory, and introduction to magnetism, superconductivity and liquid state.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105752	Condensed Matter Physics II	4(4-0-8)	105751 Condensed Matter Physics I or consent of the School	A continuation of Condensed Matter Physics I, this course covers theory of computing band structure, doping semiconductors, defect and dislocation, phonon in perfect crystal and phonon in crystal with defects, quantum structure, phase transitions, magnetism, superconductivity, superfluids, quantum Hall effect, disordered system, and metal- insulator transition.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course
105753	Crystal Growth	4(4-0-8)	Consent of the School	This course is intended to provide necessary background in the crystal growth area to postgraduate physics students. It covers nucleation, epitaxy, concepts of crystal growth phenomena, various theories, and details of the crystal growth techniques. Details of growth parameters of certain technologically important materials and their technical issues related to obtain device quality material are addressed. The instrumentation aspects of crystal growth are also included.	 describe the complicate physics problems related to this course use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105754	Electron Microscopy	4(4-0-8)		techniques of transmission electron microscope (TEM) and scanning electron microscopy (SEM). Topics include specimen preparation, adjustment and calibration of the electron microscopes, and image formation. Special emphasis is placed on electron diffraction and obtaining useful images of crystal defects.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105755 Dislocation Theory	4(4-0-8)	Consent of the School	dislocations in crystals. Basic features of the geometry, movement and elastic properties of dislocations are described along with an account of the methods of observing and studying dislocations. Lectures include the description of the more	strategy for problems related to this course 3. use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety 4. relate and apply physics knowledge

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105763	Solid State Spectroscopy	4(4-0-8)	105614 Electrodynamics and 105621 Quantum Theory I or consent of the School	This course aims at teaching electronic energy states and electronic processes induced by high energy excitations and training on spectroscopic investigations of solid materials. Lectures includes the issues on (a) electronic structure of solids (b) excitations and excitonic processes, (c) electronic processes in correlated electron systems, (d) the electronic structure of low-	2. use the advanced scientific equipment to properly carry out experiments and analyze data related to
				dimensional system and (e) experimental probes of the solid state electronic structure. Students participate in research using the experimental stations at the Siam Photon Laboratory.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105764	Electronic Structures of Solid Surface and Nanoscale Materials	4(4-0-8)	105614 Electrodynamics and 105621 Quantum Theory I or consent of the School	chemical properties of solid surfaces	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course use the advanced scientific equipment to properly carry out experiments and analyze data related to this course with safety relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course
105765	Atomic and Molecular Spectroscopy	4(4-0-8)	105614 Electrodynamics and 105621 Quantum Theory I or consent of the School	This course aims at teaching elementary physical processes brought about in atoms and molecules by high-energy photon and training on basic and applied spectroscopy of gaseous atoms and molecules. Students participate in research using the experimental stations at the Siam Photon Laboratory.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105766	Quantum Electronics I	4(4-0-8)	105665 Fundamentals of Photonics or consent of the School	This course covers solutions of time- independent Schoödiger equation, matrix formulation of quantum mechanics, spontaneous and stimulated emissions, interaction of radiation with matter, propagation in anisotropic media and light modulation.	 describe the complicate physics problems related to this course show responsibility and discipline have skills in physics communicate review discussion and presentation
105767	Quantum Electronics II	4(4-0-8)	105767 Quantum Electronics II or consent of the School	This course covers nonlinear optical effects, tunable coherent light source, optical parameter oscillator, frequency conversion, stimulated Raman effects, ultrashort pulse generation and measurement, and applications.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course
105768	Laser in Industry	4(4-0-8)	Consent of the School	This course covers laser fundamentals, Q-switching, mode- locking, femtosecond laser, detected and measured laser signal, laser safety, and laser applications and technologies in industries; welding, cutting, drilling.	 1. describe the complicate physics problems related to this course 2. execute basic problem-solving strategy for problems related to this course 3. perceive knowledge in the frontier physics 4. relate and apply physics knowledge to industrial problem 5. design and conduct research

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105771	Application of Grid and Cloud Computation in Particle Physics	4(4-0-8)	Consent of the School	computing used in particle physics. The details cover introduction to grid and cloud technology, the LHC computing grid, distributed computingmodel, software design and	4. relate and apply physics knowledge
105773	Nuclear Reactor Physics	4(4-0-8)	105625 Applied Quantum Physics or consent of the School	characteristics, neutron diffusion theory, criticality and multigroup theory, slowing down theory, heterogeneity effects, reactor kinetics	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105774 Applied Nuclear Physics	4(4-0-8)	105625 Applied Quantum Physics or consent of the School	The course introduces the student both the basic knowledge and applications of nuclear physics, covering topics: nuclear properties, nuclear models, nuclear forces, nuclear radiations and applications, nuclear fission and fusion and their applications, and other nuclear reactions and applications.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course
105775 Physics of Synchrotron Radiation	4(4-0-8)	105614 Electrodynamics or consent of the School	The course is designed to explore physics and technologies of synchrotron radiation and its sources. Theory of synchrotron radiation from relativistic charged particles is discussed in details. Basic design principles and detailed discussion of synchrotron radiation sources are given. The course also explores theories and advanced technologies of insertion devices for high brightness synchrotron radiation sources. Properties of synchrotron radiation from these sources are studied to give pictures of advantages and disadvantages of synchrotron radiation for advanced research. Fundamental principle of free electron laser is also discussed.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105782	Selected Topics in Applied Physics	4(4-0-8)	Consent of the School	Selected topics of current interest in applied physics.	 1. describe the complicate physics problems related to this course 2. execute basic problem-solving strategy for problems related to this course 3. relate and apply physics knowledge to industrial problem 4. relate and apply physics knowledge related to this course
105783	Selected Topics in Physics I	4(4-0-8)	Consent of the School	Selected topics of current interest in physics.	 1. describe the complicate physics problems related to this course 2. execute basic problem-solving strategy for problems related to this course 3. relate and apply physics knowledge to industrial problem 4. relate and apply physics knowledge related to this course
105784	Selected Topics for Industrial Problem Solving	4(4-0-8)	Consent of the School	Selected topics of current interest in applied physics.	 1. describe the complicate physics of industrial problems related to this course 2. execute basic problem-solving strategy for industrial problems related to this course 3. relate and apply physics knowledge to industrial problem 4. relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105785	Biophysics	4(4-0-8)	Consent of the School	This course covers the following topics: physicists' solutions to biophysical problems, properties of water, nanoscale structure, structure of molecules and cells, quantum effects, light and life, photosynthesis, cell mechanism, thermodynamics and statistical physics which relate to bio- systems, and biological machines.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course
105786	Medical Physics	4(4-0-8)	Consent of the School	An introduction to key physical principles as applied to medical imaging and radiation therapy. Topics include: imaging metrics, ionizing radiation and radiation safety, radioactivity, radiation therapy, computed tomography, nuclear medicine, ultrasound, and magnetic resonance imaging.	 1. describe the complicate physics problems related to this course 2. execute basic problem-solving strategy for problems related to this course 3. relate and apply physics knowledge related to this course
105788	Selected Topics in Physics II	4(4-0-8)	Consent of the School	Selected topics of current interest in applied physics.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105791	Applied Optics Laboratory	2(0-6-8)	Consent of the School	The course emphasizes on experimental techniques for observing optical phenomena and quantitative data acquisitions.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course
105796	Seminar II	1(1-0-9)	105696 Seminar I	communication skills of students. In this course, students will enhance their ability to give effective scientific presentations and will also learn basic	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105797	Colloquium II	1(1-0-9)	105697 Colloquium I	-	problems related to this course 2. execute basic problem-solving strategy for problems related to this
105823	Quantum Field Theory	4(4-0-8)	105622 Quantum Theory II or consent of the School	This course covers the following topics: Lagrangian field theory, quantum fields and propagators, interacting quantum fields, perturbation theory, simple applications (scattering processes to the lowest order), renormalization theory and renormalization group, bound states, and the functional method.	 1. describe the complicate physics problems related to this course 2. execute basic problem-solving strategy for problems related to this course 3. relate and apply physics knowledge related to this course

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105825 Quantum Computation	4(4-0-8)	105625 Applied Quantum Physics or consent of the School	computation. Topics to be covered are: overview of quantum mechanics, mixed states and open quantum systems, quantum entanglement and Bell's theorem, basic linear algebra	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105853 Superconductivity	4(4-0-8)	105621 Quantum Theory I and 105751 Condensed Matter Physics I or consent of the School	tools needed to understand conventional superconductors and to approach the (unsolved) problem of	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105854	Computational Methods for Real Materials	4(4-0-8)	105752 Condensed Matter Physics II or consent of the School	First principles simulations, using density functional theory, have proved to be reliable and computationally manageable tool in condensed matter physics with increasing impact on virtually every area. In this course, the introduction to basic concepts, commonly used algorithms, widely accepted approximations, as well as the potential and successful applications of the tool will be covered. Students will have hand-on experience in first principles calculations using modern computational codes.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course
105855	Surface Physics	4(4-0-8)	Consent of the School	The course discusses various physical properties and dynamics of thin films and the surface of bulk materials. The topics are historical review, thermodynamics, chemical bonding, crystal structure, electronic structure, phase transitions, optical properties, physisorption, chemisorption, energy transfer, kinetics and dynamics of surfaces, and epitaxy and quantum structures based on surface.	problems related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105864	Fundamentals of Holography	4(4-0-8)	105661 Physical Optics I or consent of the School	optical and digital holography. Topics include light source and recording materials for holograms, type of holograms, wavefront reconstructions, holographic	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course
105865	Information Optics	4(4-0-8)	105662 Physical Optics II or consent of the School	recording of information based on optical Fourier transform. Topics include phase contrast imaging, optical correlations, scale and rotation	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course

		Credit			
	Courses	(LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105896	Seminar III	1(1-0-9)	105796 Seminar II or consent of the School	this course, students will acquire the skills to deliver scientific	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course
105897	Colloquium III	1(1-0-9)	105797 Colloquium II or consent of the School	this course, students will acquire the skills to deliver scientific presentations suitable in style and	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105903	Geometrical Methods in Physics	4(4-0-8)	105704 Group Theory or consent of the School	have their origin in differential geometry and which have used in theoretical physics. The topics include manifolds, fiber bundles, differential manifolds and tensors, Lie derivatives	3. relate and apply physics knowledge
105914	Sensor and Transducer Technology	4(4-0-8)	Consent of the School	light and radiation measurement, temperature sensor and heat transducer, sensors for gas, liquid and solid, sensors for environmental	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course
105915	Data Storage Technology	4(4-0-8)	105615 Applied Electrodynamics or consent of the School	This course describes about data storage unit, magnetic data storages, optical data storage, and nano-scale data storage.	 1. describe the complicate physics problems related to this course 2. execute basic problem-solving strategy for problems related to this course 3. relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105923	Advanced Quantum	4(4-0-8)	105823 Quantum Field	This course is designed to introduce	1. describe the complicate physics
	Field Theory I		Theory or consent of the	the student mainly the standard	problems related to this course
			School	models for weak and strong	2. execute basic problem-solving
				interactions, and briefly the non-	strategy for problems related to this
				standard models. The lectures will	course
				cover Higgs mechanism and	3. relate and apply physics knowledge
					to industrial problem
				interaction and its applications,	4. relate and apply physics knowledge
				quantum chromodynamics (QCD) and	related to this course
				its applications, effective Lagrangian	
				methods, and non-standard models.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105924	Chiral Perturbation Theory	4(4-0-8)	105673 Nuclear and Particle Physics and 105823 Quantum Field Theory or consent of the School	The course summarizes the main elements and methods of the effective field theory of the standard model, the chiral perturbation theory, and reviews the applications of the chiral perturbation theory to the interactions of mesons and baryons at low energies with special emphasis on developments of the latest years. Among the topics covered are the strong, electromagnetic, and weak interactions of mesons at and beyond next-to-leading order in the chiral expansion, nonleptonic weak interactions of mesons, virtual photon corrections, and meson-baryon systems.	1
105925	Advanced Quantum Field Theory II	4(4-0-8)	105923 Advanced Quantum Field Theory I	This course introduces supersymmetry, supergravity, superstring theory, Calabi-Yau Compactification, duality, D-Branes, and M-Theory and others.	 1. describe the complicate physics problems related to this course 2. execute basic problem-solving strategy for problems related to this course 3. relate and apply physics knowledge to industrial problem 4. relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105953	Semiconductors Technology	4(4-0-8)	105625 Applied Quantum Physics or consent of the School	This course covers the following topics: semiconductor materials, p-n junction, metal-insulator- semiconductor capacitors, transistors, power devices, photonics devices and sensors.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course
105954	Nanoscience and Nanotechnology	4(4-0-8)	Consent of the School	This course covers the following contents: role and importance of nanoparticles around us, different types of carbon nanostructures, synthesis of various nanoparticles, technical analysis of various nanoparticles, applications of nanoparticle technology in electronics, medical applications, Casimir forces in nano-machines.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105955 Thin-film Technology and Applications	4(4-0-8)	Consent of the School	technology, an overview of the materials used for this technology, processes in creating different types of thin-films, plasma and the interaction between charged particles and surfaces, methods for surface	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105973 Heavy Ion Re	eactions 4(4-0-8)	105673 Nuclear and Particle Physics or consent of the School	The course gives an overview of heavy ion collisions at intermediate and high energies, with emphasis on the properties of hot and dense nuclear matter, the medium dependence of hadron properties in this environment, and the phase transition from hadronic matter (nuclear matter) to the quark gluon plasma (quark matter). Topics to be covered are: models for heavy ion collisions, kinematics, correlations, the equation of state for nuclear matter, production of entropy in nuclear collisions, sub-threshold production of particles, phase transitions, and quark-gluon plasma.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge to industrial problem relate and apply physics knowledge related to this course

Cou	irses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105974 Mult Syste	ti-Quark ems	4(4-0-8)	Consent of the School	The course aims to systematically teach students advanced applications of group theory to various multi- quark systems, both the normal and exotic states. The course cover followings: Review of various quark models and basic knowledge of group theory, advanced knowledge of SU(N) group and permutation group, constructions of state functions of normal hadrons and exotic multi- quark states like glueballs, hybrid mesons, hybrid baryons, pentaquarks and six-quark states, productions and annihilation of exotic multi-quark systems.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course
105996 Semi	inar IV	1(1-0-9)	105896 Seminar III	The series of four seminar courses aim to develop scientific communication skills of students. In this course, students will fine-tune their techniques for giving highly effective oral scientific presentations and will further advance their skills for scientific-journal writing. Joint seminars with other institutes will be organized (field trips required). Grade: A, B+, B, C+, C, and F.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
105997	Colloquium IV	1(1-0-9)	105897 Colloquium III	The series of four colloquium courses aim to develop scientific communication skills of students. In this course, students will fine-tune their techniques for giving highly effective oral scientific presentations and will further advance their skills for scientific-journal writing. Joint seminars with other institutes will be organized (field trips required). Grade: Satisfactory and Unsatisfactory.	 describe the complicate physics problems related to this course execute basic problem-solving strategy for problems related to this course relate and apply physics knowledge related to this course
205501	Entrepreneurship and Innovation	2(2-0-4)	Consent of the School	Study of entrepreneurship, innovation and technology business, open innovation, attitudes and motivation of innovative entrepreneurs and social entrepreneurs, characteristics of successful entrepreneurs, new venture process, business model generation and business plan, business frost & sullivan feasibility and problems of new ventures.	entrepreneurs and entrepreneurship 2. Describe the contribution of entrepreneurs and innovative products and services to the economic and social

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
205503	Intellectual Property Strategies	2(2-0-4)	Consent of the School	Concepts and principles of intellectual property management, intellectual property from research and development, patent searching, intellectual property laws and methods of intellectual property protection, intellectual property valuation and method in creating return on intellectual properties.	 Explain the concepts of intellectual assets and property in relation to innovation and entrepreneurship. Explain the relevance and scope of different mechanisms for controlling intellectual assets and property, such as patents, trademark rights, copyrights, design rights, and secrecy. Apply the concepts of intellectual property in order to formulate and express intellectual property-based strategies.
205511	Legal Aspects of Entrepreneurship	2(2-0-4)	Consent of the School	Introduction to laws, person and property, juristic acts, contract, obligation, wrongful acts, sale, hire of property, hire purchase, surety ship, pledge, mortgage, bills and cheques, partnership, limited company, shares, stock exchange, employment laws, tax laws, electronic commerce and unfair contract terms.	 Describe the importance of and essential laws and regulations for the success of new venture Discuss the legal aspects applying to the setting up a new venture Discuss the development of new laws for new venture.

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
205513	Entrepreneurship Practicum I	1(0-4-0)	Consent of the School	Practice in Identifying potential opportunities, trend and market analysis, selecting technology, opportunity assessment, develop a business concept and vision, customers and customer validation, and feasibility analysis.	 Adopt an entrepreneurial perspective, identifying and evaluating new business opportunities as they arise Apply design thinking process in defining problem and opportunity for innovation and business idea Develop new innovative business idea Present a feasible new business idea
205514	Entrepreneurship Practicum II	1(0-4-0)	Consent of the School	Practice in new product design and development, business model development, and marketing strategies	 Design sound innovative business model and product/service. Present a feasible business model and product/service to funders.
205515	Entrepreneurship Practicum III	1(0-4-0)	Consent of the School	Practice in business model validation, business planning, and financing plan for new venture.	 Develop sound business models and financial model for their new business project. Present their business plan to investors professionally.
205516	Entrepreneurship Practicum IV	3(0-15-0)	Consent of the School	Practice in launching business or business development project as a multidisciplinary team with local startup companies. The student team provides the companies with hands- on, targeted consulting in areas critical to new business ventures.	 Assess new venture opportunities Develop prototype and practically use customer discovery process Design and Develop strategies related to launching business or business development